Муниципальное бюджетное общеобразовательное учреждение «Староивановская средняя общеобразовательная школа имени Н.И. Коткова Волоконовского района Белгородской области»

«Согласовано»

Руководитель школьного *Я*рт Н.В.Зубкова

Протокол № <u>1</u> от «<u>d 9 » abyera</u> 2023 г.

«Согласовано»

Заместитель директора МБОУ-«Староивановская СОШ»

«Утверждено»

Директор МБОУ «Староивановская СОШ»

Шербаков И.С.

Приказ № 63 «31» мычего 2023 г.

Адаптированная рабочая программа учебного предмета «Физика»

для слабовидящих учащихся на уровень основного общего образования для 7-9 классов (ФГОС ООО) 2023-2024 учебный год

> Составитель: Щербаков Иван Сергеевич, учитель информатики и физики

Пояснительная записка

Адаптированная рабочая программа по физике для слабовидящих школьников 7-9 классах разработана на основе:

- Федерального государственного образовательного стандарта основного общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года № 1897;
- Физика. 7-9 классы: рабочие программы/сост. Е.Н. Тихонова-М.: Дрофа, 2015
- Положения о рабочей программе учебных предметов (учебных курсов элективных курсов, курсов дополнительного образования) МБОУ «Староивановская СОШ»

Рабочая программа ориентирована на использование УМК:

- Физика 7 класс: учебник / А.В.- Перышкин.- 6-е изд., стереотип. -М.: Дрофа, 2017. 224с.:ил.
- Физика 8 класс: учебник для А.В./ Перышкин.- 6-е изд., стереотип.- М.: Дрофа, 2018. 238,с. .:ил.
- Физика 9 класс: учебник / А.В. Перышкин, Е.М.- Гутник 7-е изд.,перераб. М.: Дрофа, 2019. 350 с.: ил.

Срок реализации программы 5 лет.

В соответствии с образовательной программой школы на изучение физики в 7-9 классах отводится 242 часов (из расчета 7 класс – 70 часов, 8 класс – 70 часов, 9 класс – 102 часов).

Формы деятельности на уроках: фронтальная, групповая, парная (пары сменного состава), индивидуальная.

Особенности реализации адаптированной общеобразовательной программы при обучении слабовидящих

Адаптированная рабочая программа полностью сохраняет поставленные в общеобразовательной программе цели и задачи, а также основное содержание, но для обеспечения особых образовательных потребностей слабовидящих обучающихся имеет особенности реализации, которые заключаются в методических приёмах, используемых на уроках:

- для слабовидящих детей ограничивается использование классной доски; ограниченность использования доски компенсируется регулярным использованием раздаточного материала (это карточки с рисунками, графиками, таблицами; текстами заданий для устных и письменных упражнений, для работы на уроке, для самостоятельных и контрольных работ, для индивидуальных домашних заданий; с памятками, справочными материалами), и использованием стационарного увеличителя и увеличителя для удаленных объектов;
- при рассматривании рисунков, графиков и таблиц учителем используется специальный алгоритм подетального рассматривания, который постепенно усваивается учащимися и для самостоятельной работы с графическими объектами и в целом постоянно уделяется внимание сенсорному и зрительному анализу;
- оказывается индивидуальная помощь при ориентировке учащихся в учебнике, при работе за ПК;
- коррекционной направленности каждого урока;
- отборе материала для урока и домашних заданий: уменьшение объёма аналогичных заданий и подбор разноплановых заданий;
- целенаправленном формировании умений и навыков ориентировки в микро и макропространстве;
- целенаправленном развитии регуляторных (самоконтроль, самооценка) и рефлексивных (самоотношение) образований.

Требования к организации пространства

Важным условием организации пространства, в котором обучаются слабовидящие обучающиеся, является безопасность и постоянство предметно-пространственной среды, что предполагает:

- определенное предметное наполнение школьных помещений (свободные проходы к партам, входным дверям, отсутствие выступающих углов и другое);

- соблюдение необходимого для слабовидящего светового режима (обеспечение беспрепятственного прохождения в школьные помещения естественного света; одновременное использование естественного и искусственного освещения; возможность использования дополнительного индивидуального источника света и другое);
- оперативное устранение факторов, негативно влияющих на состояние зрительных функций слабовидящих (недостаточность уровня освещенности рабочей зоны, наличие бликов и другое), осязания, слуха;
- определенного уровня освещенности школьных помещений;
- определение местоположения парты для слабовидящего учащегося в соответствии с рекомендациями врача-офтальмолога;
- использование материально-технических средств и учебно-методических пособий: учебники, дидактические материалы и карточки, текстовые дидактические пособия, раздаточные дидактические материалы, выполненные с соблюдением требований для слабовидящих детей (увеличенный шрифт, черный текст на белом/ однотонном фоне, четкий контур рисунков и схем, контрастные цвета).

1. Планируемые результаты изучения учебного предмета «Физика»

Личностными результатами обучения физике в основной школе являются:

- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к творцам науки и техники, отношение к физике как элементу общечеловеческой культуры;
 - самостоятельность в приобретении новых знаний и практических умений;
- готовность к выбору жизненного пути в соответствии с собственными интересами и возможностями;
- мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;
- формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметными результатами изучения курса «Физики» является формирование универсальных учебных действий (УУД). К ним относятся:

- 1) личностные;
- 2) регулятивные, включающие также действия саморегуляции;
- 3) познавательные, включающие логические, знаково-символические;
- 4) коммуникативные.
- Личностные УУД обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и события с принятыми этическими принципами, знание моральных норм и умение выделить нравственный аспект поведения), самоопределение и ориентацию в социальных ролях и межличностных отношениях, приводит к становлению ценностной структуры сознания личности.
- Регулятивные УУД обеспечивают организацию учащимися своей учебной деятельности.
 К ним относятся:
- *целеполагание* как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено учащимися, и того, что еще неизвестно;
- *планирование* определение последовательности промежуточных целей с учетом конечного результата; составление плана и последовательности действий;
- *прогнозирование* предвосхищение результата и уровня усвоения, его временных характеристик;
- контроль в форме сличения способа действия и его результата с заданным эталоном с целью обнаружения отклонений и отличий от эталона;

- *коррекция* внесение необходимых дополнений и корректив в план и способ действия в случае расхождения эталона, реального действия и его продукта;
- *оценка* выделение и осознание учащимися того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения;
- волевая саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию, к выбору ситуации мотивационного конфликта и к преодолению препятствий.
 - **Познавательные** УУД включают общеучебные, логические, знаково-символические УД. *Общеучебные* УУД включают:
 - самостоятельное выделение и формулирование познавательной цели;
 - поиск и выделение необходимой информации;
 - структурирование знаний;
 - выбор наиболее эффективных способов решения задач;
- рефлексия способов и условий действия, контроль и оценка процесса и результатов деятельности;
 - смысловое чтение как осмысление цели чтения и выбор вида чтения в зависимости от цели;
- умение адекватно, осознано и произвольно строить речевое высказывание в устной и письменной речи, передавая содержание текста в соответствии с целью и соблюдая нормы построения текста;
- постановка и формулирование проблемы, самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- действие со знаково-символическими средствами (замещение, кодирование, декодирование, моделирование).

Погические УУД направлены на установление связей и отношений в любой области знания. В рамках школьного обучения под логическим мышлением обычно понимается способность и умение учащихся производить простые логические действия (анализ, синтез, сравнение, обобщение и др.), а также составные логические операции (построение отрицания, утверждение и опровержение как построение рассуждения с использованием различных логических схем — индуктивной или дедуктивной).

Знаково-символические УУД, обеспечивающие конкретные способы преобразования учебного материала, представляют действия моделирования, выполняющие функции отображения учебного материала; выделение существенного; отрыва от конкретных ситуативных значений; формирование обобщенных знаний.

• **Коммуникативные** УУД обеспечивают социальную компетентность и сознательную ориентацию учащихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми.

Общими предметными результатами обучения физике в основной школе являются:

- знания о природе важнейших физических явлений окружающего мира и понимание смысла физических законов, раскрывающих связь изученных явлений;
- умения пользоваться методами научного исследования явлений природы, проводить наблюдения, планировать и выполнять эксперименты, обрабатывать результаты измерений, представлять результаты измерений с помощью таблиц, графиков и формул, обнаруживать зависимости между физическими величинами, объяснять полученные результаты и делать выводы, оценивать границы погрешностей результатов измерений;
- умения применять теоретические знания по физике на практике, решать физические задачи на применение полученных знаний;
- умения и навыки применять полученные знания для объяснения принципов действия важнейших технических устройств, решения практических задач повседневной жизни, обеспечения безопасности своей жизни, рационального природопользования и охраны окружающей среды;

- формирование убеждения в закономерной связи и познаваемости явлений природы, в объективности научного знания, в высокой ценности науки в развитии материальной и духовной культуры людей;
- развитие теоретического мышления на основе формирования умений устанавливать факты, различать причины и следствия, строить модели и выдвигать гипотезы, отыскивать и формулировать доказательства выдвинутых гипотез, выводить из экспериментальных фактов и теоретических моделей физические законы;
- коммуникативные умения докладывать о результатах своего исследования, участвовать в дискуссии, кратко и точно отвечать на вопросы, использовать справочную литературу и другие источники информации.

Частными предметными результатами обучения физике в основной школе, на которых основываются общие результаты, являются:

- понимание и способность объяснять такие физические явления, как свободное падение тел, колебания нитяного и пружинного маятников, атмосферное давление, плавание тел, диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел, процессы испарения и плавления вещества, охлаждение жидкости при испарении, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, электризация тел, нагревание проводников электрическим током, электромагнитная индукция, отражение и преломление света, дисперсия света, возникновение линейчатого спектра излучения;
- умения измерять расстояние, промежуток времени, скорость, ускорение, массу, силу, импульс, работу силы, мощность, кинетическую энергию, потенциальную энергию, температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, влажность воздуха, силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление, фокусное расстояние собирающей линзы, оптическую силу линзы;
- владение экспериментальными методами исследования в процессе самостоятельного изучения зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления, силы Архимеда от объема вытесненной воды, периода колебаний маятника от его длины, объема газа от давления при постоянной температуре, силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала, направления индукционного тока от условий его возбуждения, угла отражения от угла падения света;
- понимание смысла основных физических законов и умение применять их на практике: законы динамики Ньютона, закон всемирного тяготения, законы Паскаля и Архимеда, закон сохранения импульса, закон сохранения энергии, закон сохранения электрического заряда, закон Ома для участка цепи, закон Джоуля—Ленца;
- понимание принципов действия машин, приборов и технических устройств, с которыми каждый человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании;
- овладение разнообразными способами выполнения расчетов для нахождения неизвестной величины в соответствии с условиями поставленной задачи на основании использования законов физики;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, охрана окружающей среды, техника безопасности и др.).

Учащиеся, проявляющие особый интерес к физике, смогут изучать ее на повышенном уровне с одним дополнительным учебным часом из вариативной части базисного учебного (образовательного) плана по физике.

Предметными результатами изучения предмета «Физика» являются следующие умения:

7 класс

Формирование основ научного мировоззрения и физического мышления:

- различать экспериментальный и теоретический способ познания природы;
- характеризовать механическое движение, взаимодействия и механические силы, понятие энергии, понятие об атомно-молекулярном строении вещества и трёх состояниях вещества.

Проектирование и проведение наблюдения природных явлений с использованием необходимых измерительных приборов:

- оценивать абсолютную погрешность измерения, применять метод рядов;
- проводить измерение силы тяжести, силы упругости, силы трения; наблюдение превращения энергии, действия простых механизмов, наблюдение зависимости давления газа от его температуры и объёма, атмосферного давления, давления столба жидкости в зависимости от плотности жидкости и высоты столба жидкости, наблюдение действия выталкивающей силы и её измерение.

Диалектический метод познания природы:

- оперировать пространственно-временными масштабами мира, сведениями о строении Солнечной системы и представлениями о её формировании;
- обосновывать взаимосвязь характера теплового движения частиц вещества и свойств вещества.

Развитие интеллектуальных и творческих способностей:

- разрешать учебную проблему при введении понятия скорости, плотности вещества, анализе причин возникновения силы упругости и силы трения, опытов, подтверждающих закон сохранения энергии, закон Паскаля, существование атмосферного давления и выталкивающей силы.

Применение полученных знаний и умений для решения практических задач повседневной жизни:

- определять цену деления измерительного прибора;
- измерять массу и объём тела, температуру тела, плотность твёрдых тел и жидкостей, атмосферное давление;
- на практике применять правило равновесия рычага, зависимость быстроты процесса диффузии от температуры вещества, условие плавания тел.

8 класс

Формирование основ научного мировоззрения и физического мышления:

- характеризовать понятие теплового движения и абсолютного нуля температур;
- применять первый закон термодинамики в простейших ситуациях;
- характеризовать виды теплообмена и физические процессы, сопровождающиеся изменением внутренней энергии вещества;
- применять понятие об электрическом и магнитном полях для объяснения соответствующих физических процессов;
- характеризовать понятие электрический ток и процессы, сопровождающие его прохождение в различных средах (металлах, вакууме, электролитах, газах, полупроводниках).

Проектирование и проведение наблюдения природных явлений с использованием необходимых измерительных приборов:

- проводить наблюдение процессов нагревания, кристаллизации вещества;
- изучать зависимости силы тока в электрической цепи от приложенного напряжения и сопротивления цепи;
 - проводить наблюдение односторонней проводимости полупроводникового диода;
- проводить наблюдение действия проводника с током на стрелку компаса, действия электромагнита и электродвигателя.

Диалектический метод познания природы:

- излагать научную точку зрения по вопросу о внутреннем строении звёзд, о принципиальной схеме работы тепловых двигателей и экологических проблемах, обусловленных их применением;
 - анализировать вопросы, связанные с явлением электромагнитной индукции.

Развитие интеллектуальных и творческих способностей:

- разрешать учебную проблему при анализе влияния тепловых двигателей на окружающую среду, при рассмотрении устройства калориметра, в процессе изучения процессов кристаллизации, испарения и конденсации, электролиза, закона Джоуля и Ленца, явления электромагнитной индукции.

Применение полученных знаний и умений для решения практических задач повседневной жизни:

- учитывать процессы теплообмена (теплоизоляция, система охлаждения автомобиля);
- проводить расчёты простейших электрических цепей, электронагревательных приборов, электрических предохранителей;
 - физически верно осуществлять защиту от атмосферных электрических разрядов;
- ориентироваться на местности при помощи компаса, применять электромагниты, микроэлектродвигатели, громкоговорители.

9 класс

Формирование основ научного мировоззрения и физического мышления:

- проводить классификацию видов механического движения;
- применять в простейших случаях фундаментальные законы механики (законы Ньютона, закон сохранения импульса, закон сохранения энергии);
- характеризовать основные особенности колебательных и волновых процессов различной природы;
- приводить примеры, подтверждающие волновой характер распространения света, законы оптики;
- излагать ряд положений квантовой физики (гипотеза М. Планка, модель атома Н. Бора, классификация элементарных частиц и фундаментальные взаимодействия).

Проектирование и проведение наблюдения природных явлений с использованием необходимых измерительных приборов:

- изучать зависимости ускорения тела от величины равнодействующей силы, приложенной к телу;
 - изучать взаимодействие тел с целью проверки закона сохранения импульса;
- исследовать зависимости периода колебательной системы от её параметров (длина нити маятника, масса тела и жёсткость пружины в случае колебания тела, прикреплённого к пружине);
 - провести наблюдение явления отражения, преломления света и действия линзы;
 - провести наблюдение сплошного спектра и линейчатых спектров.

Диалектический метод познания природы:

- применять закон сохранения импульса для анализа особенностей реактивного движения;
- обосновать зависимость возможного типа механических волн и скорости их распространения от свойств среды;
- провести анализ шкалы электромагнитных излучений как примера перехода количественных изменений в частоте колебаний в качественные изменения свойств излучений различных диапазонов;
- изложить вопрос классификации элементарных частиц и их участия в различных видах фундаментальных взаимодействий.

Развитие интеллектуальных и творческих способностей:

- разрешать учебную проблему и развивать критичность мышления при анализе криволинейного движения, первого закона Ньютона, условия запуска искусственного спутника Земли, условий возникновения свободных механических колебаний при объяснении различия скорости звука в различных средах, необходимости осуществления процессов модуляции и детектирования при радиотелефонной связи, при рассмотрении отражения света от шероховатой поверхности, при объяснении факта существования изотопов.

Применение полученных знаний и умений для решения практических задач повседневной жизни:

- учитывать знания по механике в повседневной жизни (движение на поворотах, тормозной путь, равновесие);
- на практике учитывать зависимость громкости и высоты звука от амплитуды и частоты колебаний;
- применять знания по оптике с целью сохранения качества зрения и применения зеркал, линз, оптических приборов (фотоаппарат, очки, микроскоп);
- судить о влиянии радиоактивного излучения на живые организмы, о приёмах защиты от излучения и способах его измерения.

2. Содержание учебного предмета «Физика»

Содержание учебного предмета соответствует Федеральному государственному образовательному стандарту основного общего образования.

В данной части программы приведено рекомендуемое распределение учебных часов по разделам курса, определена последовательность изучения учебных тем в соответствии с задачами обучения. Указан минимальный перечень демонстраций, проводимых учителем в классе, лабораторных работ и опытов, выполняемых учениками.

7 класс

Введение

Физика — наука о природе. Физические явления. Физические свойства тел. Наблюдение и описание физических явлений. Физические величины. Измерения физических величин: длины, времени, температуры. Физические приборы. Международная система единиц. Точность и погрешность измерений. Физика техника...

Предметными результатами изучения темы являются:

- понимание физических терминов: тело, вещество, материя.
- умение проводить наблюдения физических явлений; измерять физические величины: расстояние, промежуток времени, температуру;
- владение экспериментальными методами исследования при определении цены деления прибора и погрешности измерения;
- понимание роли ученых нашей страны в развитие современной физики и влияние на технический и социальный прогресс.

Первоначальные сведения о строении вещества

Строение вещества. Опыты, доказывающие атомное строение вещества. Тепловое движение атомов и молекул. Броуновское движение. Диффузия в газах, жидкостях и твердых телах. Взаимодействие частиц вещества. Агрегатные состояния вещества. Модели строения твердых тел, жидкостей и газов. Объяснение свойств газов, жидкостей и твердых тел на основе молекулярно-кинетических представлений.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: диффузия, большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел.
- владение экспериментальными методами исследования при определении размеров малых тел;
- понимание причин броуновского движения, смачивания и несмачивания тел; различия в молекулярном строении твердых тел, жидкостей и газов;
- умение пользоваться СИ и переводить единицы измерения физических величин в кратные и дольные единицы

• умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана окружающей среды).

Взаимодействия тел

Механическое движение. Траектория. Путь. Равномерное и неравномерное движение. Скорость. Графики зависимости пути и модуля скорости от времени движения. Инерция. Инертность тел. Взаимодействие тел. Масса тела. Измерение массы тела. Плотность вещества. Сила. Сила тяжести. Сила упругости. Закон Гука. Вес тела. Связь между силой тяжести и массой тела. Сила тяжести на других планетах. Динамометр. Сложение двух сил, направленных по одной прямой. Равнодействующая двух сил. Сила трения. Физическая природа небесных тел Солнечной системы

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: механическое движение, равномерное и неравномерное движение, инерция, всемирное тяготение
- умение измерять скорость, массу, силу, вес, силу трения скольжения, силу трения качения, объем, плотность, тела равнодействующую двух сил, действующих на тело в одну и в противоположные стороны
- владение экспериментальными методами исследования в зависимости пройденного пути от времени, удлинения пружины от приложенной силы, силы тяжести тела от массы тела, силы трения скольжения от площади соприкосновения тел и силы нормального давления
- понимание смысла основных физических законов: закон всемирного тяготения, закон Гука
- владение способами выполнения расчетов при нахождении: скорости (средней скорости), пути, времени, силы тяжести, веса тела, плотности тела, объема, массы, силы упругости, равнодействующей двух сил, направленных по одной прямой в соответствие с условиями поставленной задачи на основании использования законов физики
- умение находить связь между физическими величинами: силой тяжести и массой тела, скорости со временем и путем, плотности тела с его массой и объемом, силой тяжести и весом тела
 - умение переводить физические величины из несистемных в СИ и наоборот
- понимание принципов действия динамометра, весов, встречающихся в повседневной жизни, и способов обеспечения безопасности при их использовании
- умение использовать полученные знания, умения и навыки в повседневной жизни, быту, охране окружающей среды.

Давление твердых тел, жидкостей и газов

Давление. Давление твердых тел. Давление газа. Объяснение давления газа на основе молекулярно-кинетических представлений. Передача давления газами и жидкостями. Закон Паскаля. Сообщающие сосуды. Атмосферное давление. Методы измерение атмосферного давления. Барометр, манометр, насос. Закон Архимеда. Условия плавания тел. Воздухоплавание.

Предметными результатами изучения темы являются:

- понимание и способность объяснить физические явления: атмосферное давление, давление жидкостей, газов и твердых тел, плавание тел, воздухоплавание, расположение уровня жидкости в сообщающихся сосудах, существование воздушной оболочки Землю, способы уменьшения и увеличения давления
- умение измерять: атмосферное давление, давление жидкости на дно и стенки сосуда, силу Архимеда
- владение экспериментальными методами исследования зависимости: силы Архимеда от объема вытесненной воды, условий плавания тела в жидкости от действия силы тяжести и силы Архимеда
- понимание смысла основных физических законов и умение применять их на практике: закон Паскаля, закон Архимеда

- понимание принципов действия барометра-анероида, манометра, насоса, гидравлического пресса, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании
- владение способами выполнения расчетов для нахождения давления, давление жидкости на дно и стенки сосуда, силы Архимеда в соответствие с поставленной задачи на основании использования законов физики
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Работа и мощность. Энергия

Механическая работа. Мощность. Простые механизмы. Момент силы. Условия равновесия рычага. «Золотое правило» механики. Виды равновесия. Коэффициент полезного действия (КПД). Энергия. Потенциальная и кинетическая энергия. Превращение энергии.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: равновесие тел превращение одного вида механической энергии другой
- умение измерять: механическую работу, мощность тела, плечо силы, момент силы. КПД, потенциальную и кинетическую энергию
- владение экспериментальными методами исследования при определении соотношения сил и плеч, для равновесия рычага
 - понимание смысла основного физического закона: закон сохранения энергии
- понимание принципов действия рычага, блока, наклонной плоскости, с которыми человек встречается в повседневной жизни и способов обеспечения безопасности при их использовании.
- владение способами выполнения расчетов для нахождения: механической работы, мощности, условия равновесия сил на рычаге, момента силы, КПД, кинетической и потенциальной энергии
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Итоговая контрольная работа Повторение

8 класс

Тепловые явления

Тепловое движение. Тепловое равновесие. Температура. Внутренняя энергия. Работа и теплопередача. Теплопроводность. Конвекция. Излучение. Количество теплоты. Удельная теплоемкость. Расчет количества теплоты при теплообмене. Закон сохранения и превращения энергии в механических и тепловых процессах.

Плавление и отвердевание кристаллических тел. Удельная теплота плавления. Испарение и конденсации. Кипение. Влажность воздуха. Удельная теплота парообразования и конденсации. Объяснение изменения агрегатного состояния вещества на основе молекулярно-кинетических представлений. Закон сохранения энергии в тепловых процессах. Преобразование энергии в тепловых машинах. Двигатель внугреннего сгорания. Паровая турбина. КПД теплового двигателя. Экологические проблемы использования тепловых машин.

Предметными результатами при изучении темы являются:

- понимание и способность объяснять физические явления: конвекция, излучение, теплопроводность, изменение внутренней энергии тела в результате теплопередачи или работы внешних сил, испарение (конденсация) и плавление (отвердевание) вещества, охлаждение жидкости при испарении, конденсация, кипение, выпадение росы
- умение измерять: температуру, количество теплоты, удельную теплоемкость вещества, удельную теплоту плавления вещества, удельная теплоту парообразования, влажность воздуха

- владение экспериментальными методами исследования ависимости относительной влажности воздуха от давления водяного пара, содержащегося в воздухе при данной температуре и давления насыщенного водяного пара: определения удельной теплоемкости вещества
- понимание принципов действия конденсационного и волосного гигрометров психрометра, двигателя внутреннего сгорания, паровой турбины с которыми человек постоянно встречается в повседневной жизни, и способов обеспечения безопасности при их использовании
- понимание смысла закона сохранения и превращения энергии в механических и тепловых процессах и умение применять его на практике
- овладение разнообразными способами выполнения расчетов для нахождения удельной теплоемкости, количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении, удельной теплоты сгорания, удельной теплоты плавления, влажности воздуха, удельной теплоты парообразования и конденсации, КПД теплового двигателя в соответствии с условиями поставленной задачи на основании использования законов физики
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Электрические явления

Электризация тел. Два рода электрических зарядов. Взаимодействие заряженных тел. Проводники, диэлектрики и полупроводники. Электрическое поле. Закон сохранения электрического заряда. Делимость электрического заряда. Электрон. Строение атома. Электрический ток. Действие электрического поля на электрические заряды. Источники тока. Электрическая цепь. Сила тока. Электрическое напряжение. Электрическое сопротивление. Закон Ома для участка цепи. Последовательное и параллельное соединение проводников. Работа и мощность электрического тока. Закон Джоуля—Ленца. Конденсатор. Правила безопасности при работе с электроприборами.

Предметными результатами при изучении темы являются:

- понимание и способность объяснять физические явления: электризация тел, нагревание проводников электрическим током, электрический ток в металлах, электрические явления в позиции строения атома, действия электрического тока
- умение измерять силу электрического тока, электрическое напряжение, электрический заряд, электрическое сопротивление
- владение экспериментальными методами исследования зависимости силы тока на участке цепи от электрического напряжения, электрического сопротивления проводника от его длины, площади поперечного сечения и материала
- понимание смысла закона сохранения электрического заряда, закона Ома для участка цепи. Закона Джоуля-Ленца
- понимание принципа действия электроскопа, электрометра, гальванического элемента, аккумулятора, фонарика, реостата, конденсатора, лампы накаливания, с которыми человек сталкивается в повседневной жизни, и способов обеспечения безопасности при их использовании
- владение различными способами выполнения расчетов для нахождения силы тока, напряжения, сопротивления при параллельном и последовательном соединении проводников, удельного сопротивления работы и мощности электрического тока, количества теплоты, выделяемого проводником с током, емкости конденсатора, работы электрического поля конденсатора, энергии конденсатора
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Электромагнитные явления

Опыт Эрстеда. Магнитное поле. Магнитное поле прямого тока. Магнитное поле катушки с током. Постоянные магниты. Магнитное поле постоянных магнитов. Магнитное поле Земли. Взаимодействие магнитов. Действие магнитного поля на проводник с током. Электрический двигатель.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: намагниченность железа и стали, взаимодействие магнитов, взаимодействие проводника с током и магнитной стрелки, действие магнитного поля на проводник с током
- владение экспериментальными методами исследования зависимости магнитного действия катушки от силы тока в цепи
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Световые явления

Источники света. Прямолинейное распространение света. Видимое движение светил. *Отражение света*. Закон отражения света. *Плоское зеркало*. Преломление света. Закон преломления света. Линзы. Фокусное расстояние линзы. Оптическая сила линзы. Изображения, даваемые линзой. Глаз как оптическая система. Оптические приборы.

Предметными результатами изучения темы являются:

- понимание и способность объяснять физические явления: прямолинейное распространения света, образование тени и полутени, отражение и преломление света
 - умение измерять фокусное расстояние собирающей линзы, оптическую силу линзы
- владение экспериментальными методами исследования зависимости изображения от расположения лампы на различных расстояниях от линзы, угла отражения от угла падения света на зеркало
- понимание смысла основных физических законов и умение применять их на практике: закон отражения и преломления света, закон прямолинейного распространения света
- различать фокус линзы, мнимый фокус и фокусное расстояние линзы, оптическую силу линзы и оптическую ось линзы, собирающую и рассеивающую линзы, изображения, даваемые собирающей и рассеивающей линзой
- умение использовать полученные знания, умения и навыки в повседневной жизни, экологии, быту, охране окружающей среды, технике безопасности.

Итоговая контрольная работа Повторение

9 класс

Содержание обучения представлено в программе разделами «Механические явления» («Законы взаимодействия и движения тел», Механические колебания и волны. Звук»), «Электромагнитные явления» («Электромагнитное поле»), «Квантовые явления» («Строение атома и атомного ядра»), «Элементы астрономии» («Строение и эволюция Вселенной»)

Законы взаимодействия и движения тел

Материальная точка. Система отсчета. Перемещение. Скорость прямолинейного равномерного движения. Прямолинейное равноускоренное движение: мгновенная скорость, ускорение, перемещение. Графики зависимости кинематических величин от времени при равномерном и равноускоренном движении. Относительность механического движения. Геоцентрическая и гелиоцентрическая системы мира. Инерциальная система отсчета. Первый, второй и третий законы Ньютона. Свободное падение. Невесомость. Закон всемирного тяготения. Искусственные спутники Земли. Импульс. Закон сохранения импульса. Реактивное движение.

Лабораторные работы

Лабораторная работа №1 «Исследование равноускоренного движения без начальной скорости»

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять *физические явления*: поступательное движение (назвать отличительный признак), смена дня и ночи на Земле, свободное падение тел. невесомость, движение по окружности с постоянной по модулю скоростью;
- способность давать определения /описания • знание физических понятий: относительность движения (перечислить, в чём проявляется), геоцентрическая и гелиоцентрическая системы мира; [первая космическая скорость], реактивное движение; физических моделей: материальная точка, система отсчёта, физических величин: перемещение, скорость равномерного прямолинейного движения, мгновенная скорость ускорение при равноускоренном И прямолинейном движении, скорость и центростремительное ускорение при равномерном движении тела по окружности, импульс;
- понимание смысла *основных физических законов*: динамики Ньютона, всемирного тяготения, сохранения импульса, сохранения энергии), умение применять их на практике и для решения учебных задач;
- умение приводить примеры **технических устройств** и живых организмов, в основе перемещения которых лежит принцип реактивного движения. Знание и умение объяснять устройство и действие космических ракет-носителей;
- умение использовать полученные знания, умения и навыки в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);
- умение измерять мгновенную скорость и ускорение при равноускоренном прямолинейном движении, центростремительное ускорение при равномерном движении по окружности.

Механические колебания и волны. Звук

Колебательное движение. Колебания груза на пружине. Свободные колебания. Колебательная система. Маятник. Амплитуда, период, частота колебаний. Гармонические колебания. Превращение энергии при колебательном движении. Затухающие колебания. Вынужденные колебания. Резонанс. Распространение колебаний в упругих средах. Поперечные и продольные волны. Длина волны. Связь длины волны со скоростью ее распространения и периодом (частотой). Звуковые волны. Скорость звука. Высота, тембр и громкость звука. Эхо. Звуковой резонанс. Интерференция звука.

Лабораторные работы

Лабораторная работа №3 «Исследование зависимости периода и частоты свободных колебаний маятника от длины его нити»

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять *физические явления*: колебания нитяного (математического) и пружинного маятников, резонанс (в т. ч. звуковой), механические волны, длина волны, отражение звука, эхо;
- знание и способность давать определения физических понятий: свободные колебания, колебательная система, маятник, затухающие колебания, вынужденные колебания, звук и условия его распространения; физических величин: амплитуда, период, частота колебаний, собственная частота колебательной системы, высота, [тембр], громкость звука, скорость звука; физических моделей: [гармонические колебания], математический маятник;
- владение экспериментальными методами исследования зависимости периода колебаний груза на нити от длины нити.

Электромагнитное поле

Однородное и неоднородное магнитное поле. Направление тока и направление линий его магнитного поля. Правило буравчика. Обнаружение магнитного поля. Правило левой руки.

Индукция магнитного поля. Магнитный поток. Опыты Фарадея. Электромагнитная индукция. Направление индукционного тока. Правило Ленца. Явление самоиндукции. Переменный ток. Генератор переменного тока. Преобразования энергии в электрогенераторах. Трансформатор. Передача электрической энергии на расстояние. Электромагнитное поле. Электромагнитные волны. Скорость распространения электромагнитных волн. Влияние электромагнитных излучений на живые организмы. Колебательный контур. Получение электромагнитных колебаний. Принципы радиосвязи и телевидения. Интерференция света. Электромагнитная природа света. Преломление света. Показатель преломления. Дисперсия света. Цвета тел. Спектрограф и спектроскоп. Типы оптических спектров. Спектральный анализ. Поглощение и испускание света атомами. Происхождение линейчатых спектров.

Лабораторные работы

Лабораторная работа №4 «Изучение явления электромагнитной индукции» Лабораторная работа №5 «Наблюдение сплошного и линейчатых спектров испускания»

Предметными результатами изучения темы являются:

- понимание и способность описывать и объяснять физические явления/процессы: электромагнитная индукция, самоиндукция, преломление света, дисперсия света, поглощение и испускание света атомами, возникновение линейчатых спектров излучения и поглощения;
- умение давать определения / описание физических понятий: магнитное поле, линии магнитной индукции; однородное и неоднородное магнитное поле, магнитный поток, переменный электрический ток, электромагнитное поле, электромагнитные волны, электромагнитные колебания, радиосвязь, видимый свет; физических величин: магнитная индукция, индуктивность, период, частота и амплитуда электромагнитных колебаний, показатели преломления света;
- знание формулировок, понимание смысла и умение применять закон преломления света и правило Ленца, квантовых постулатов Бора;
- знание назначения, устройства и принципа действия *технических устройств*: электромеханический индукционный генератор переменного тока, трансформатор, колебательный контур; детектор, спектроскоп, спектрограф;

понимание сути метода спектрального анализа и его возможностей

Строение атома и атомного ядра

Радиоактивность как свидетельство сложного строения атомов. Альфа-, бета- и гамма-излучения. Опыты Резерфорда. Ядерная модель атома. Радиоактивные превращения атомных ядер. Сохранение зарядового и массового чисел при ядерных реакциях. Методы наблюдения и регистрации частиц в ядерной физике. Протонно-нейтронная модель ядра. Физический смысл зарядового и массового чисел. Изотопы. Правило смещения для альфа- и бета-распада. Энергия связи частиц в ядре. Деление ядер урана. Цепная реакция. Ядерная энергетика. Экологические проблемы работы атомных электростанций. Период полураспада. Закон радиоактивного распада. Влияние радиоактивных излучений на живые организмы. Термоядерная реакция.

Лабораторные работы

Лабораторная работа $N_{2}6$ «Измерение естественного радиационного фона дозиметром»

Лабораторная работа №7 «Изучение деления ядра атома урана по фотографии треков»

Лабораторная работа №8 «Оценка периода полураспада находящихся в воздухе продуктов распада газа радона»

Лабораторная работа №9 « Изучение треков заряженных частиц по готовым фотографиям»

Предметными результатами изучения темы являются:

понимание и способность описывать и объяснять *физические явления*: радиоактивное излучение, радиоактивность,

знание и способность давать определения/описания физических понятий: радиоактивность, альфа-, бета- и гамма-частицы; физических моделей: модели строения атомов, предложенные Д. Д. Томсоном и Э. Резерфордом; физических величин: период полураспада, дефект масс, энергия связи.

понимание смысла *основных физических законов*: закон сохранения массового числа и заряд, закон радиоактивного распада.

использование полученных знаний, умений и навыков в повседневной жизни (быт, экология, охрана здоровья, техника безопасности и др.);

назначения и понимание сути экспериментальных методов исследования частиц;

знание и описание устройства и умение объяснить принцип действия *технических* устройств и установок: счётчика Гейгера, камеры Вильсона, пузырьковой камеры, ядерного реактора.

Строение и эволюция Вселенной

Состав, строение и происхождение Солнечной системы. Планеты и малые тела Солнечной системы. Строение, излучение и эволюция Солнца и звезд. Строение и эволюция Вселенной.

Частными предметными результатами изучения темы являются:

- представление о составе, строении, происхождении и возрасте Солнечной системы;
- умение применять физические законы для объяснения движения планет Солнечной системы,
- знать, что существенными параметрами, отличающими звёзды от планет, являются их массы и источники энергии (термоядерные реакции в недрах звёзд и радиоактивные в недрах планет);
- сравнивать физические и орбитальные параметры планет земной группы с соответствующими параметрами планет-гигантов и находить в них общее и различное;
- объяснять суть эффекта X. Доплера; формулировать и объяснять суть закона Э. Хаббла, знать, что этот закон явился экспериментальным подтверждением модели нестационарной Вселенной, открытой А. А. Фридманом.

Итоговая контрольная работа Резервное время

3. Тематическое планирование

7 класс

№	Название темы	Колич	Электронные (цифровые)
п/п		ество	образовательные ресурсы
		часов	
1.	Введение.	4	• Физика. Библиотека наглядных
2.	Первоначальные сведения о строении	6	пособий. 7—11 классы (под
	вещества.		редакцией Н. К. Ханнанова).
3.	Взаимодействие тел.	23	• Лабораторные работы по
4.	Давление твердых тел, жидкостей и	21	физике. 7 класс (виртуальная
	газов.		физическая лаборатория).
5.	Работа и мощность. Энергия.	13	• Коллекция ЦОР
6.	Итоговая контрольная работа.	1	

7.	Повторение.	2	http://school-collection.edu.ru
			• Коллекция
			«Естественнонаучные
			эксперименты»: физика
			http://experiment.edu.ru
			• Мир физики: физический
			эксперимент
			http://demo.home.nov.ru
			• Сервер кафедры общей физики
			физфака МГУ: физический
			практикум и демонстрации
			http://genphys.phys.msu.ru

8 класс

No	Название темы	Количест	Электронные (цифровые)
п/п		во часов	образовательные ресурсы
1.	Тепловые явления.	23	• Физика. Библиотека
2.	Электрические явления.	29	наглядных пособий. 7—11
3.	Электромагнитные явления.	5	классы (под редакцией Н. К.
4.	Световые явления.	10	Ханнанова).
5.	Итоговая контрольная работа.	1	• Лабораторные работы по
6.	Повторение.	2	физике. 8 класс
			(виртуальная физическая
			лаборатория).
			• Коллекция ЦОР
			http://school-collection.edu.ru
			• Коллекция
			«Естественнонаучные
			эксперименты»: физика
			http://experiment.edu.ru
			• Мир физики: физический
			эксперимент
			http://demo.home.nov.ru
			• Сервер кафедры общей
			физики физфака МГУ:
			физический практикум и
			демонстрации
			http://genphys.phys.msu.ru

9 класс

№	Название темы	Количест	Электронные (цифровые)
п/п		во часов	образовательные ресурсы

1.	Законы взаимодействия и движения	34	• Физика. Библиотека наглядных
	тел.		пособий. 7—11 классы (под
2.	Механические колебания и волны.	16	редакцией Н. К. Ханнанова).
	Звук.		• Лабораторные работы по
3.	Электромагнитное поле.	26	физике. 9 класс (виртуальная
4.	Строение атома и атомного ядра.	19	физическая лаборатория).
5.	Строение и эволюция Вселенной.	7	• Коллекция ЦОР
6.	Итоговая контрольная работа.	1	http://school-collection.edu.ru
7.	Резервное время.	1	• Коллекция
			«Естественнонаучные
			эксперименты»: физика
			http://experiment.edu.ru
			• Мир физики: физический
			эксперимент
			http://demo.home.nov.ru
			• Сервер кафедры общей физики
			физфака МГУ: физический
			практикум и демонстрации
			http://genphys.phys.msu.ru

3.1 Воспитательный потенциал урока

Реализация педагогическими работниками воспитательного потенциала урока предполагает следующее: установление доверительных отношений между педагогическим работником и его обучающимися, способствующих позитивному восприятию обучающимися требований и просьб педагогического работника, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности;

побуждение обучающихся соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (педагогическими работниками) и сверстниками (обучающимися), принципы учебной дисциплины и самоорганизации;

привлечение внимания обучающихся к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией — инициирование ее обсуждения, высказывания обучающимися своего мнения по ее поводу, выработки своего к ней отношения;

использование воспитательных возможностей содержания учебного предмета через демонстрацию обучающимся примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;

применение на уроке интерактивных форм работы с обучающимися: интеллектуальных игр, стимулирующих познавательную мотивацию обучающихся; дидактического театра, где полученные на уроке знания обыгрываются в театральных постановках; дискуссий, которые дают обучающимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат обучающихся командной работе и взаимодействию с другими обучающимися;

включение в урок игровых процедур, которые помогают поддержать мотивацию обучающихся к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;

организация шефства мотивированных и эрудированных обучающихся над их неуспевающими одноклассниками, дающего обучающимся социально значимый опыт сотрудничества и взаимной помощи;

инициирование и поддержка исследовательской деятельности обучающихся в рамках реализации ими индивидуальных и групповых исследовательских проектов, что даст обучающимся возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения.